The Proximity Principle: Bioinformatics is a science melting pot, bringing together many disciplines to answer big questions about our health.

Recently the BRC was featured on both the College of Sciences website and the main NC State University website for the groundbreaking work being done through the Bioinformatics cluster.

The Bioinformatics cluster is part of NC State’s groundbreaking Chancellor’s Faculty Excellence Program, which aims to put faculty together, both physically and intellectually, to combine ideas and experience in ways that solve big problems. Faculty clusters and interdisciplinary work have become hot topics in higher education around the world, but this “new” interdisciplinary approach has actually permeated science for centuries.  NC State’s program, focusing on assembling groups of faculty with complementary areas of expertise to study interdisciplinary research challenges, was one of the first major initiatives Chancellor Randy Woodson announced after coming to the university in 2010.

To read the article in its entirety, please visit the College of Sciences website here:

Bioinformatics Student Ranked in the Nvidia ACS COMP award 2016

Please help us in congratulating Jeremy Ash (Bioinformatics, Ph.D.)who recently won second place in the competitive Nvidia ACS COMP poster contest.  His work is relevant for the development of extremely predictive QSAR models needed for lead optimization, which is of great interest to pharmaceutical companies for modeling technology. Congratulations, Jeremy!!


ASH_ERK2_MDdescriptors Jeremy Ash

BRC Hosts Spring B.I.G. talks

The Bioinformatics Research Center will be hosting weekly Industry and Government partners in informal talks aimed at partnership, collaboration, and the sharing of ideas. Each Monday at 11:30am, we will welcome a different partner to speak to our Graduate students, faculty and research staff. Talks last roughly 30 minutes, and are followed by pizza. Schedule is as follows:

BIG schedule

B.I.G. schedule


‘Development of Novel Therapeutics to Modulate Bacterial Biofilms’ Research Project to start in 2016

Drs. Pierce (Chemistry), Fourches (Chemistry, BRC), and Elfenbein (CVM) have received a grant from the Research and Innovation Funding (RISF) program. Their research project is entitled “Development of Novel Therapeutics to Modulate Bacterial Biofilms” and will be conducted in 2016.

Tanguay & Reif labs awarded new Systems Toxicology grant!

The Environmental Protection Agency (EPA) has awarded a 3-year grant to fund a collaboration between Oregon State University (Robert Tanguay, Jane La Du, Mike Simonich, Chris Sullivan) and North Carolina State University (David Reif) entitled “System Toxicological Approaches to Define Flame Retardant Adverse Outcome Pathways”.

From the EPA webpage:

A team of researchers from Oregon State University and North Carolina State University proposes to conduct the first comprehensive in vivo,structure-activity based toxicity studies of flame retardant chemicals (FRCs), including FRCs that EPA has phased out, FRCs that companies manufacture now, and FRCs that companies have proposed as replacements. (They) will test the hypothesis that the toxicity of FRCs will be highly dependent on their chemical structure.

Computer-aided design of carbon nanotubes with the desired bioactivity and safety profiles

Growing experimental evidences suggest the existence of direct relationships between the surface chemistry of nanomaterials and their biological effects. Herein, we have employed computational approaches to design a set of biologically active carbon nanotubes (CNTs) with controlled protein binding and cytotoxicity. Quantitative structure–activity relationship (QSAR) models were built and validated using a dataset of 83 surface-modified CNTs. A subset of a combinatorial virtual library of 240 000 ligands potentially attachable to CNTs was selected to include molecules that were within the chemical similarity threshold with respect to the modeling set compounds. QSAR models were then employed to virtually screen this subset and prioritize CNTs for chemical synthesis and biological evaluation. Ten putatively active and 10 putatively inactive CNTs decorated with the ligands prioritized by virtual screening for either protein-binding or cytotoxicity assay were synthesized and tested. We found that all 10 putatively inactive and 7 of 10 putatively active CNTs were confirmed in the protein-binding assay, whereas all 10 putatively inactive and 6 of 10 putatively active CNTs were confirmed in the cytotoxicity assay. This proof-of-concept study shows that computational models can be employed to guide the design of surface-modified nanomaterials with the desired biological and safety profiles.
Authors: Denis Fourches, Dongqiuye Pu, Liwen Li, Hongyu Zhou, Qingxin Mu, Gaoxing Su, Bing Yan & Alexander Tropsha

Dr. Denis Fourches’ ACS talk wins award for ‘Best Talk’

At the recent annual Symposium on Emerging Technologies in Computational Chemistry, BRC Faculty member, Dr. Denis Fourches won the ACS award for the best presentation. The COMP division (Computers in Chemistry) holds a Symposium on Emerging Technologies in Computational Chemistry at the American Chemical Society Fall National Meeting every year. The objective of the symposium is to stimulate, reward, and publicize methodological advances in computational chemistry.  Schrödinger, Inc., sponsors a $1,000 prize for the best talk at the symposium. Pre-selected talks are evaluated at the meeting by a panel of experts based on the quality of the presentation and the impact that the research will have on the future of computational chemistry and allied sciences. More info at

His talked was titled: “Next Generation Approaches in Computational Chemistry” and the abstract can be found here: COMP_Fourches_ACSFall2015_Abstract

DREAMing of smart crowds in toxicity testing

Recent research conducted by BRC Director Fred Wright and Ivan Rusyn of Texas A&M University ( resulted in a treasure trove of data on variation of chemical sensitivities in human cell lines. In collaboration with the National Institute of Environmental Health Sciences and the National Center for Advancing Translational Sciences, the researchers had studied over 1000 cell lines and exposure to 179 chemicals, with the goal of mapping genetic variation in toxicity response. Says Wright “the data are so rich that we really are just scratching the surface.” Expanding the collaboration to include Sage Bionetworks and a crowd-sourcing initiative known as Dream Challenges, the bioinformatics community was enlisted to further mine the data, providing prediction algorithms that can aid future researchers in predicting toxicity based on DNA profiles and chemical structures. An article describing the results of this crowdsourcing effort recently appeared in Nature Biotechnology (

Image credit: Nature Biotechnology (2015) doi:10.1038/nbt.3299, under Creative Commons License



EPA awards grant for multi-institution collaboration between the BRC and Texas A&M

The Environmental Protection Agency (EPA) has awarded a $6 million grant to fund a multi-institutional collaboration between the Texas A&M College of Veterinary Medicine & Biomedical Sciences and the Bioinformatics Research Center at NCSU. investigating the effects of environmental toxicants on human health with a focus on the potential adverse effects on the heart. The investigators will study the effect of environmental chemicals on cultures of cells that have been coaxed into behaving like heart muscle, even to the point of beating with a regular rhythm. Dr. Fred Wright, the principal investigator for the NCSU site, says “the ability to systematically investigate cardiac toxicity in this manner opens up the study of inter-individual variability in toxicity testing, in a way that was not possible before.” Other investigators at NCSU include Associate Professor David Reif and Research Assistant Professor Yi-Hui Zhou.

Image credit: Cellular Dynamics



In fruit flies, infection results in increased genetic diversity

New research from North Carolina State University and Reed College shows that when fruit flies are attacked by parasites or bacteria they respond by producing offspring with greater genetic variability. This extra genetic variability may give the offspring an increased chance of survival when faced with the same pathogens. These findings demonstrate that parents may purposefully alter the genotypes of their offspring.

The study was led by BRC faculty member Dr. Nadia Singh, and published in the August 14, 2015 issue of Science.

Image credit: Dahlia Nielsen, NCSU